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The Lanczos homogeneous filter diagonalization method has been employed to compute the HOCl ro-vibrational
states for a range of total angular momenta (J ) 0, 1, 5, 10, 11, 20, 30) on a newly developed ab initio
potential energy surface by Nanbu et al. (J. Theor. Comput. Chem.2002, 1, 263). For such computationally
challenging calculations, a parallel computing strategy has been incorporated into our method to perform the
matrix-vector multiplications. For the computed low bound states, a spectroscopic assignment has been made
and the widely used approximate adiabatic rotation method has been tested for the broad range of total angular
momenta for this deep-well system. Comparison of experimental results with exact quantum mechanical
calculations for the selected far-infrared transitions involving the range of total angular momenta has been
made possible for the first time.

1. Introduction

Paul M. Dirac stated in 1929 (shortly after the introduction
of the Schrodinger equation) that “the fundamental laws
necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of these
laws lead to equations that are too complex to be solved”.
Seventy seven years later, the complete description of chemical
reactions has been realized only for small molecular systems
of 3-4 atoms. In the case of unimolecular systems, most such
calculations have focused on the nonrotating case. Even for
scattering calculations, exact results atJ ) 0 are often
extrapolated to largerJ via approximations. Exact nonzero total
angular momentum (J > 0) calculations are essential, however,
for a complete description of quantum reactive scattering,
thermal kinetics, energy transfer, and also in correctly simulating
molecular spectroscopy. This latter application provides the
context of the present paper in which we explore the capabilities
of recent methodological developments for exact quantum
dynamical calculation of ro-vibrational bound states over a wide
range of angular momenta for the challenging and important
HOCl molecular system.

TheseJ > 0 calculations are still very challenging even for
triatomic reactions, especially when dealing with complex-
forming systems. The major reason for this situation is the so-
called “angular momentum catastrophe”:1 manyJ > 0 calcu-
lations have to be performed, and the size of the Hamiltonian
matrix increases linearly withJ. For these nonzeroJ calculations,

it is apparently impractical to employ conventional direct
diagonalization methods because of the requirement of a large
and often prohibitive computer core memory. Several sophis-
ticated basis set contraction schemes2,3 do exist, but because of
their unfavorable scaling they are limited to optimized basis
sets ofN < 10 000. Variational approaches can be used to
compute the low bound states accurately, but for high-lying
bound states, convergence becomes difficult with the increasing
size of the basis set.4,5 However, iterative methods such as the
real Chebyshev iterative method6-8 and the Lanczos method9,10

are well suited to solving this large-scale eigenvalue problem
(or, for reactive scattering, the linear system generated by the
causal Green operator) and in recent years have become
increasingly popular. These methods are useful, especially for
large basis sets, because they do not require explicit storage of
the Hamiltonian matrix. Rather, only the multiplication of the
Hamiltonian onto a vector is required. When combined with a
sparse representation of the Hamiltonian such as a discrete
variable representation (DVR),11 both memory and CPU time
can be reduced dramatically.

Lanczos methods exploit the sparsity of the tridiagonal
subspace Hamiltonian generated by the iterative Lanczos
algorithm.9 Although the Lanczos algorithm has been used
commonly for matrix diagonalization10 and short-time propaga-
tions,12 recent work in the Brisbane lab has focused on exploring
more general applications of the Lanczos representation, includ-
ing spectral densities,13-15 filter diagonalization for bound states
and resonances,16-21 partial resonance widths in unimolecular
decay,22 and state-to-state reactive scattering.23,24An important
feature of these newer Lanczos implementations is that all
physically relevant information is extracted from within the
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Lanczos representation. This allows a single Lanczos iteration
of arbitrary length to be utilized for the propagation rather than
a sequence of short iterations. We note that for scattering or
resonance applications the absorbing boundary conditions are
imposed within the Lanczos algorithm by incorporation of a
complex absorbing potential (CAP) into the Hamiltonian. This
has the consequence that the Lanczos iterations are complex
and yield a complex-symmetric tridiagonal representation of the
Hamiltonian. Significant progress has also been made recently
in the search for a real Lanczos subspace method capable of
computing state-to-state reactive scattering probabilities.25-27

These new real Lanczos methods require no complex absorbing
potential or damping operator.

The HOCl system is very important in atmospheric chemistry
because of its involvement in the depletion of ozone in the
stratosphere and hence has been studied extensively from both
experimental and theoretical perspectives. It is considered to
be a temporary reservoir of the chlorine atoms and has been
detected by far-infrared emission techniques.28 For this reason
a lot of effort has been devoted to the spectroscopic study of
HOCl in the microwave, far-infrared, and infrared regions of
its spectrum. For example, the high-resolution far-infrared
spectrum of HOCl has been reported for total angular momen-
tum above 50 withKa above 6.29,30 However, even this
seemingly simple system involving only three atoms turns out
to be very difficult to model quantum mechanically for highJ
values. So far most of the calculations have focused on theJ )
0 case because of obvious computational difficulties. Exact
quantum calculations including Coriolis coupling have been
reported only forJ ) 1 and 3.31,32The potential energy surfaces
(PES) most used are those by Bowman et al.33,34 and those by
Schinke et al.35 These high-quality ab initio PESs are scaled to
achieve agreement with the extant spectroscopic data forJ )
0. Very recently, a new global ab initio PESs for HOCl system
has been developed by Nanbu et al.,36 which is suitable for both
spectroscopy and reaction dynamics investigations. The newer
ab initio surface by Nanbu et al. is not scaled or adjusted to
reproduce the available spectroscopic data. In the present study,
we provide the first extensive bound-state calculations on this
new surface in comparison with previous calculations and
spectroscopic data atJ ) 0, as well as providing the first
rigorous calculations for large values of the total angular
momentum ranging up to 30.

The computational tasks are too heavy using a conventional
single-processor algorithm for the high angular momentum cases
studied in this work; hence, we adopt a parallel computing
model. The reasons for employing parallel computing are
twofold. On one hand, the CPU time required to compute bound
states as well as resonances for this system is substantial, partly
because of the deep potential well, which can support hundreds
of bound states even for theJ ) 0 case, corresponding to the
HOCl complex. AsJ increases, the number of bound states will
increase withJ, which makes the convergence even more
difficult. On the other hand, the storage requirement of the
potential matrix and overlapping integrals also increases linearly
with J. Thus, with the typical memory available on current
cluster machines (i.e., a few gigabytes per node), the employ-
ment of parallel computing strategies becomes unavoidable for
higherJ values. Recently, several groups have begun to exploit
the power of parallel computing in performing the rigorousJ
> 0 quantum calculations in TD wave packet methods and in
sequential diagonalization and truncation methods.37,38 In this
paper, we show how such parallel computations make it possible
to compute the dense ro-vibrational state manifold with com-

putational times and storage requirements comparable to theJ
) 0 case. Our specific implementation involves a message-
passing interface (MPI)39 inserted in our local Fortran programs
utilizing the Lanczos homogeneous filter diagonalization
method.20,22

Because of the computational challenges of the exact calcula-
tions, approximate quantum methods such as adiabatic rotation
(AR),40 J-shifting,41 and helicity conserving (HC)42 or centrifugal
sudden (CS) approximations are used commonly for nonzero
J calculations. For the HOCl system, several groups have
performed such approximate quantum calculations.31,43-47 For
example, Bowman et al.31 have performed calculations for the
J ) 1 case using AR as well as CS approximation. Schinke at
al.43 and Bian and Poirier44 have performedJ > 0 calculations
for selected resonances by ignoring the Coriolis coupling and
by choosingΩ ) 0 (Ω is the body-fixed angular momentum
projection quantum number). Nakamura et al. have investigated
the validity of theJ-shifting approximation for the O+ HCl
reaction and proposed an extendedJ-shift approximation.46,47

As important as exact quantum methods may be, approximations
may become unavoidable for complex and/or large systems.
Therefore, it will be interesting to compare the exact quantum
results with those from different approximate methods for a
range of total angular momentum. The key issue in these
approximations is whether a reasonably good quantum number,
Ω, associated with the projection of total angular momentum
on a body-fixed axis, exists. If the substatesΩ of the wave
function for J > 0 are coupled heavily, then the Coriolis
coupling between the states cannot be ignored and any attempts
to assign the helicity quantum number,Ω, will fail. We will
examine this issue by comparing the exact quantum results with
a rationally implemented AR approximation and a helicity
quantum numberΩ assignment for both spectroscopic symmetry
calculations of bound states.

The rest of this article proceeds as follows. In Section 2 we
describe the theoretical methods needed to characterize bound
states for nonzero total angular momentum, together with a brief
overview of our parallel computing model and some HOCl
system-specific details. In Section 3 we present the results ofJ
) 0, 1, 5, 10, 11, 20, and 30 bound-state calculations performed
on the Nanbu et al.’s potential energy surface. Detailed
comparisons with previous work for the low bound-state
manifold as well as the comparisons with AR approximation
and with experiments will also be given in Section 3. Section
4 concludes.

2. Methodology

In general, we treat the three internal Jacobi coordinates (R,
r, γ) in discrete variable representation (DVR), whereas the three
Eulerian angles (θ, φ, ψ) are described in a basis set.48-50 This
procedure is very efficient because the potential part of the
Hamiltonian matrix is diagonal, which can reduce the memory
requirement substantially. The triatomic Hamiltonian in Jacobi
coordinates in a body-fixed frame is given by

where orbital angular momentum,l̂2 ) (Ĵ - ĵ)2 ) Ĵ2 + ĵ2 -
2Ĵ‚ĵ. Using symmetry-adapted symmetric top eigenfunctions to
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expand the total wave function, one can get the coupled
equations

and

with m ) 0 for ĤΩ,Ω+1 andm ) 1 for ĤΩ,Ω-1. Such coupled
equations can be represented in DVR

with tΩ,Ω(1
Jj ) -(1 + δΩ,m)1/2 (p2/2µR2)xJ(J+1)-Ω(Ω(1)

xj(j+1)-Ω(Ω(1).
In eq 4, we have usedΩ-dependent DVR for theγ coordinate,

which is obtained by diagonalizing the coordinate operator
(x ) cos γ) matrix Ω,γ∆jj ′ ) ∫-1

1 Θj
Ω(γ) xΘj′

Ω(γ) dx. Here
Θj

Ω(γ) is the associated Legendre polynomial. In the direct
diagonalization scheme, the DVR points and the transformation
matrix are simply the eigenvalues and the eigenvector matrix
of the coordinate operator matrix. ForR andr coordinates, we
have used potential optimized DVR.51 The details of the DVRs
will be given in section 3.

In Lanczos iteration, we choose a normalized, randomly
generated initial vector,V1 * 0, and setâ1 ) 0 andV0 ) 0.
Then use the basic Lanczos algorithm for complex-symmetric
matrices52

to project the non-Hermitian absorbing potential augmented
Hamiltonian into a Krylov subspace. TheM × M tridiagonal
representation of the Hamiltonian,TM, has diagonal elements,
Rk ) (Vk|Ĥ′|Vk), and subdiagonal elements,âk ) (Vk-1|Ĥ′|Vk).
Note that a complex-symmetric inner product is used (i.e., bra
vectors are not complex conjugated). The two vectors,{R} and
{â}, are stored in Lanczos iterations for later FD analysis to
extract physical information such as bound-state or resonance
quantities.

Though conceptionally simple, the propagation is the most
time-consuming part of the calculation. We use MPI to perform
parallel computation for the matrix-vector multiplications. For

even spectroscopic symmetry, the 4D matrix-vector multiplica-
tion looks like

with, φΩ ) HΩ,Ω-1ψΩ-1 + HΩ,ΩψΩ + HΩ,Ω + 1ψΩ+1. For odd
spectroscopic symmetry, the Hamiltonian matrix is the same
except,Ω ) 1, 2, ...,J. The spectroscopic symmetry parity is
defined as (-1)J+p, with p being the parity of the wave function
under inversion of the space-fixed nuclear coordinates. We adopt
a natural way to distribute the problem with respect toΩ block,
which will make the calculations of{R} and{â} much easier
and the modifications of our code as few as possible for parallel
computing. We assign one processor as master processor (ID
) 0), which is used to write{R} and{â}, and assign all other
processors as working processors, which are used to perform
the matrix-vector multiplications for differentΩ components.
Our implementation has the flexibility that any number of cpus
(2 e n e J + 2) can be employed in our Sun cluster machine.
According to the Coriolis coupling rules, only two nearest
neighboringΩ components need to communicate and we use
the MPI_SEND and MPI_RECEIVE commands to carry out
such communications. In this way the data transfer between
processors is not too heavy. We distribute the work load as
equally as possible over processors. However, becausejmin is
different for eachΩ component, butjmax is the same, that is,
the DVR size forγ is different for eachΩ component, and also
for the highest or the lowestΩ components, only one Coriolis
coupling term is required; thus, the load for each processor is
still not well balanced. Indeed, in distributed computing, there
is always a tradeoff between load balance and the complications
in coding. Our principle is that strict balancing is not required,
but the algorithm we have implemented works well generally
regardless.

We note that other parallel models have been used to calculate
ro-vibrational states. For example, Wu and Hayes53 defined a
conceptual 3D mesh whereΩ is used as one of the indices,
Mussa and Tennyson38 have employed a two step procedure,
and Eggert et al.54 described a fine granularity parallel Lanczos
calculation in which a pseudo spectral split Hamiltonian scheme
has been employed to implement the acting of the Hamiltonian
on the wave function. Here different parallel strategies are
employed to suit different methods and also the different
machine architectures.

Finally, we perform filter diagonalization inside the subspace
representation to extract the bound and (when required)
resonance information for any chosen energy windows. The key
issue in LHFD is to solve the homogeneous linear system by
using an efficient backward three-term substitution recursion.
The details of LHFD have been given in refs 20 and 22.

2.1. HOCl System Specifics.The triatomic HOCl Hamilto-
nian matrix was set up in terms of reactant Jacobi coordinates,
and the ab initio potential energy surface developed recently
by Nanbu et al.36 was employed. For the two radial coordinates,
a potential-optimized DVR51 (PODVR) was utilized to reduce
the size of the Hamiltonian matrix. For theR coordinate, we
have usedNR ) 130 PODVR points, which were contracted
from 360 evenly spaced primitive sinc DVR points55 spanning
the range from 2.0 a0 to 12.0 a0 with the one-dimensional
reference potential,V(R, re, θe). Similarly, for ther coordinate,
Nr ) 80 PODVR points were obtained from 245 primary DVR
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points spanning the range from 1.0 a0 to 6.0 a0 using the
reference potential,V(Re, r, θe). For theγ variable,Ω-dependent
DVR functions, defined by correspondingly associated Gauss-
Jacobi quadrature points, were employed. The spectroscopic
symmetry originated from the WignerD-functions has also been
considered. The resulting direct product basis set was further
contracted by discarding those points whose potential energies
were higher than the cutoff energy,Vcutoff ) 0.48 eV (here the
zero energy point is referred to as the dissociation limit of O(1D)
+ HCl channel), resulting in the final basis size of ap-
proximately, 294 097× (J + 1), for even spectroscopic
symmetry and approximately, 294 097× J, for odd spectro-
scopic symmetry.

In our calculations the Lanczos propagations and FD analysis
are completely separated. Although parallel computations are
employed only in the propagation step, the FD analyses are
performed using conventional nonparallel architectures. Because
of the communications and loading balance issues mentioned
above, the parallel computing model does not scale ideally with
(J + 1) for even spectroscopic symmetry orJ for odd
spectroscopic symmetry. However, one can achieve wall clock
times (e.g., for even symmetryJ ) 5 HOCl case) that are within
about a factor of 2 ofJ ) 0 calculations (for the same iteration
numbers). For nonparallel computing, the wall clock times will
approximately be a factor of 6 ofJ ) 0 calculations. In our
calculations, 2 cpus have been used for both even and odd
spectroscopic symmetries for theJ ) 1 case, 4 cpus have been
used for both even and odd spectroscopic symmetries for theJ
) 5 case, and 8 cpus have been used for both even and odd
spectroscopic symmetries for theJ ) 10, 11, 20, and 30 cases.

3. Results

We have employed the LHFD method summarized above to
compute the low-lying ro-vibrational bound-state manifold of
the HOCl molecule atJ ) 0, 1, 5, 10, 11, 20, and 30 for both
spectroscopic symmetries. To facilitate the comparisons with
previous reported calculations and with the experimental results,
in the following tables the calculated energies are shifted such
that the zero energy point is referred to as the ground-state
energy of HOCl forJ ) 0, which is-4.009613 eV relative to
the O(1D) + HCl dissociation limit. For theJ ) 0 case 2000
Lanczos iterations are sufficient to converge the lowest 20 bound
states, while for theJ ) 30 case 10 000 Lanczos iterations are
sufficient to generate the results reported herein. In Table 1 we
have listed the 20 lowest bound-state energies fromJ ) 0
calculations for comparison. In this table, the second column
contains the spectroscopic assignments of the states withν1,
ν 2, andν 3 being the number of quanta in the OH stretching,
HOCl bending, and OCl stretching local modes, respectively.
The third column contains the results calculated with the present
quantum LHFD method, while the fourth column provides the
reported results from Bowman et al.31 The last column gives
the available spectroscopic data.30,56-59 Inspection of the energies
shows that they are in general agreement, but because of
different PESs and/or different methods employed, the differ-
ences for some bound states are still relatively large. It is
important to stress again at this point that the PES of Nanbu et
al. we employ in this paper is a genuine ab initio surface, without
being scaled and/or being inverted to reproduce the 22 available
experimental vibrational bound-state energies, as was done
previously for the other two high quality ab initio PESs.34,35

Another technical point is that spline interpolation of potential
energies at grid points has been employed in this PES, whereas
in the other two PESs fitted analytical expansions have been

employed. We have checked one-dimensional reference poten-
tialsV(R, re, θe) andV(Re, r, θe), generated on both the primary
grids and the optimized grids. The interpolated surfaces display
some irregularities, indicating the possibility of artificial errors
due to insufficient ab initio data points. This may explain why
the reported vibrational state energies are not as accurate as the
previous calculations and the experimental ones, despite the high
level of the ab initio calculations. Further work is underway to
explore this issue and develop the global ab initio potential
energy surface to give a better representation of the minimum
because it has been developed and tested initially with a view
to reactive scattering calculations. However, as will be seen
below, the present PES suffices for the purposes of this paper,
which explores the exact quantum dynamical calculation of the
rotational progressions to highJ.

In Supporting Information Tables 2-7, we report the low-
lying ro-vibrational bound-state manifold for nonzero total
angular momentum valuesJ ) 1, 5, 10, 11, 20, and 30. For the
highJ values, the exact quantum calculations including Coriolis
coupling terms are still very challenging even though the total
number of Lanczos iterations is modest (ca. 10 000) because
of the ever increasing size of the basis set. For instance, it takes
one week of wall time to converge the reported low-lying bound-
state energies forJ ) 30 using 8 cpus (4 nodes) of an Opteron
dual-processor 2.2 GHz grid. Without the combination of
parallel computing with the more advanced methodology, it
would be exceedingly difficult if not prohibitive to perform these
benchmark test calculations. In these tables the calculated bound
states can be assigned in terms of the three fundamentalsν1,
ν2, andν3 and in terms ofJ, Ka, andKc. Here quantum numbers
Ka and Kc are used to label the energy levels using the rigid
rotor approximation because HOCl is nearly a symmetric top
(Ka is indeed the same asΩ).

To test the adiabatic rotation approximations for such a range
of J values, we have performed the approximation calculations
using Bowman et al.’s adiabatic rotation method60 for the low
bound-state energies (J-shifting and adiabatic rotation ap-
proximations are at the same level of approximations, with the
former being employed in scattering calculations and the latter

TABLE 1: Vibrational Energies of the First 20 Bound
States atJ ) 0a

n (ν1, ν2, ν3) this work Bowman experimental

1 0, 0, 0 0.00 0.000
2 0, 0, 1 650.58 724.336 724.36
3 0, 1, 0 1261.97 1238.617 1238.62
4 0, 0, 2 1309.21 1444.107 1438.68
5 0, 1, 1 1926.92 1953.748
6 0, 0, 3 1963.22 2154.028
7 0, 2, 0 2522.28 2456.363 2461.21
8 0, 1, 2 2592.00 2663.255
9 0, 0, 4 2615.53 2852.172

10 0, 2, 1 3185.19 3163.826
11 0, 1, 3 3245.26 3362.256
12 0, 0, 5 3268.65 3537.056
13 1, 0, 0 3599.72 3609.972 3609.48
14 0, 3, 0 3792.41 3670.391 3668.44
15 0, 2, 2 3846.33 3865.881
16 0, 1, 4 3888.63 4049.231
17 0, 0, 6 3921.39 4208.750
18 1, 0, 1 4225.06 4333.990 4331.91
19 0, 3, 1 4441.93 4368.682
20 0, 2, 3 4500.65 4556.721

a The ro-vibrational ground-state energy was calculated at-4.009613
eV relative to the O(1D) + HCl dissociation limit, which is referred to
as the zero energy point. All energy units are in cm-1 and quantum
numbers (ν1,ν2,ν3) are used to label the energy levels. See the text for
more details.
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being used in ro-vibrational state calculations). Rotation con-
stantsA, B, andC used in this work are taken from experimental
results,30 for example, (20.46360936, 0.504277847, 0.491162955)
for the (0,0,0) band, (20.43372436, 0.499681662, 0.486602466)
for the (0,0,1) band, and (21.22679572, 0.503461812,
0.489043678) for the (0,1,0) band (unit in cm-1). Comparing
of the quantum and AR results in the Tables 2-7 one can see
how the AR approximation performs whenJ andKa vary. For
low J values, the performance of the AR approximation is
excellent. For example, forJ ) 1 case, there is little difference
between the quantum and AR results. Then asJ increases, the
results from AR approximation start to deviate from the exact
quantum results, but even up toJ ) 30 the AR approximation
still predicts reasonable results. In terms of quantum number
Ka, the AR approximation will become worse asKa increases.
This can be seen through the inspection of the quantum and
AR results in the same vibrational band for eachJ > 0 table.
These results indicate that the mixing of differentΩ components
of the wave function forJ > 0 is not apparent, and AR results
are indeed very close to the exact quantum results, at least for
the low energy part. Given that there are errors in the vibrational
energy levels based on pure ab initio PES and that in AR
approximation we have used the experimental rotational con-
stantsA, B, andC in this work, the agreement is indeed quite
satisfactory.

Another more complicated approximation that is widely used
in dynamical calculations is the so-called helicity conserving
approximation (also known as centrifugal sudden approxima-
tion).61,62 In the helicity conserving (HC) approximation, the
Coriolis coupling blocksĤΩ,Ω(1 in eq 3 are simply ignored and
the diagonal blockĤΩ,Ω in eq 2 can be solved independently
for eachΩ at a fixedJ value. A common characteristic in these
different levels of approximations is whether a good quantum
number Ω exists. In this paper we do not perform helicity
conserving calculations explicitly, instead we will make a
relatively easy comparison of the energy levels with the same
Ka but from different spectroscopic symmetries, to see whether
Ω is a good quantum number; thus, we can judge whether
helicity conserving approximation is a good approximation. If
the calculated energies from even and odd symmetries are nearly
the same for the sameΩ component, thenΩ is a good quantum
number. This is because there exists near degeneracy for the
sameΩ components from both symmetries. Therefore, helicity
conserving calculations or even the much simpler adiabatic
rotation approximations should be accurate, which will save
quite a lot of computational time. By such comparison of the
corresponding energy levels we can see that for the HOCl
system there does exist near degeneracy for the sameΩ
components from both symmetries, indicating thatΩ is indeed
a good quantum number. We also note that whenever the energy
levels become close, for example, the first two energy levels in
each band, the mixing of differentΩ components is more
serious, and the differences of the corresponding energy levels
become relatively large. The above observations indicate that
for the HOCl system, at least for the low-energy part of the
spectrum, the Coriolis coupling is generally not very important
and various approximations can be used to predict approximately
the ro-vibrational energies.

Having calculated the ro-vibrational energies and assigned
them, it is straightforward now to compare the high-resolution
experimental far-infrared transitions29 with our computed ones.
In Table 8 we have listed selected 56 such transitions involving
J ) 5, 10, 11, 20, and 30 for the two lowest vibrational bands.
The listed experimental results have been reported 15 years ago

by Carlotti et al. (see the fifth column).29 Because of the obvious
computational difficulties, exact quantum calculations have
hitherto not been possible. Comparison of the observed and
computed transitions indicates that the differences for all of the
transitions are between 0.5 and 3 cm-1. Such an agreement is
unexpected at first, given that the PES used in this work does
not predict the 22 known experimental vibrational state energies
at J ) 0 with such accuracy. However, after analysis we find
that all of these transitions are pure rotational transitions (i.e.,
within the same vibrational band); hence, the inaccuracies in
band origins caused by the PES can be approximately canceled
for these far-infrared transitions. It seems that the accuracy of

TABLE 8: Comparison of Experiments and Quantum
Calculations for Selected Far-Infrared Transitionsa

n (J′, Ka, Kc) (J′′, Ka, Kc) (ν1, ν2, ν3) OBS CAL

1 11, 1, 11 10, 0, 10 0, 0, 0 30.47268 30.00
2 10, 2, 8 11, 1, 11 0, 0, 0 49.30875 48.59
3 30, 2, 28 30, 1, 29 0, 0, 0 56.94863 55.88
4 20, 2, 18 20, 1, 19 0, 0, 0 58.46497 57.55
5 11, 2, 9 11, 1, 10 0, 0, 0 59.39131 58.50
6 10, 2, 8 10, 1, 9 0, 0, 0 59.46407 58.57
7 5, 2, 4 5, 1, 5 0, 0, 0 59.92694 59.03
8 10, 2, 9 10, 1, 10 0, 0, 0 60.17781 59.28
9 11, 2, 10 11, 1, 11 0, 0, 0 60.24701 59.34

10 20, 2, 19 20, 1, 20 0, 0, 0 61.15034 60.27
11 30, 2, 29 30, 1, 30 0, 0, 0 62.75077 61.99
12 11, 2, 10 10, 1, 9 0, 0, 0 70.40212 69.32
13 11, 2, 9 10, 1, 10 0, 0, 0 71.12366 70.03
14 10, 3, 8 11, 2, 9 0, 0, 0 88.58254 87.30
15 10, 3, 7 11, 2, 10 0, 0, 0 88.58710 87.30
16 30, 3, 27 30, 2, 28 0, 0, 0 99.19930 97.91
17 11, 3, 9 10, 2, 8 0, 0, 0 110.46226 108.79
18 11, 3, 8 10, 2, 9 0, 0, 0 110.46455 108.79
19 10, 4, 7 11, 3, 8 0, 0, 0 128.04666 126.19
20 10, 4, 6 11, 3, 9 0, 0, 0 128.04666 126.19
21 11, 4, 7 10, 3, 8 0, 0, 0 149.91366 147.67
22 11, 4, 8 10, 3, 7 0, 0, 0 149.91366 147.67
23 10, 5, 5 11, 4, 8 0, 0, 0 167.16715 164.76
24 10, 5, 6 11, 4, 7 0, 0, 0 167.16715 164.76
25 30, 5, 25 30, 4, 26 0, 0, 0 177.79184 175.14
26 30, 5, 26 30, 4, 27 0, 0, 0 177.79184 175.14
27 20, 5, 16 20, 4, 17 0, 0, 0 177.98236 175.37
28 20, 5, 15 20, 4, 16 0, 0, 0 177.98236 175.37
29 11, 5, 6 10, 4, 7 0, 0, 0 189.01961 186.28
30 11, 5, 7 10, 4, 6 0, 0, 0 189.01961 186.28
31 10, 6, 5 11, 5, 6 0, 0, 0 205.86410 202.93
32 10, 6, 4 11, 5, 7 0, 0, 0 205.86410 202.93
33 10, 2, 8 11, 1, 11 0, 0, 1 49.33260 48.93
34 20, 2, 18 20, 1, 19 0, 0, 1 58.39383 57.84
35 10, 2, 9 10, 1, 10 0, 0, 1 60.10094 59.58
36 11, 2, 10 11, 1, 11 0, 0, 1 60.16989 59.65
37 20, 2, 19 20, 1, 20 0, 0, 1 61.07015 60.57
38 30, 2, 29 30, 1, 30 0, 0, 1 62.66476 62.29
39 11, 2, 10 10, 1, 9 0, 0, 1 70.22696 69.59
40 20, 3, 17 20, 2, 18 0, 0, 1 99.30556 98.48
41 20, 3, 18 20, 2, 19 0, 0, 1 99.35080 98.43
42 11, 3, 9 10, 2, 8 0, 0, 1 110.23551 109.25
43 11, 3, 8 10, 2, 9 0, 0, 1 110.23880 109.25
44 10, 4, 7 11, 3, 8 0, 0, 1 127.97162 126.89
45 10, 4, 6 11, 3, 9 0, 0, 1 127.97162 126.89
46 20, 4, 16 20, 3, 17 0, 0, 1 138.71705 137.49
47 20, 4, 17 20, 3, 18 0, 0, 1 138.71705 137.49
48 11, 4, 7 10, 3, 8 0, 0, 1 149.63802 148.29
49 11, 4, 8 10, 3, 7 0, 0, 1 149.63802 148.31
50 10, 5, 6 11, 4, 7 0, 0, 1 167.04307 165.65
51 10, 5, 5 11, 4, 8 0, 0, 1 167.04307 165.63
52 30, 5, 25 30, 4, 26 0, 0, 1 177.56931 175.97
53 30, 5, 26 30, 4, 27 0, 0, 1 177.56931 175.97
54 20, 5, 15 20, 4, 16 0, 0, 1 177.75930 176.21
55 11, 5, 6 10, 4, 7 0, 0, 1 188.69489 187.03
56 11, 5, 7 10, 4, 6 0, 0, 1 188.69489 187.03

a Units are in cm-1. See the text for more details.
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the PES mainly affects the band origin, whereas the quantum
dynamics calculations will determine the pure rotational spec-
trum. This indicates that even though the purely ab initio PESs
have not yet reached spectroscopic levels of accuracy for the
calculation of the vibrational band origins, the exact quantum
dynamics calculations are capable of very good accuracy for
predicting rotational transitions. The measurements of the
rotational transitions in the far infrared (IR) range have proved
to be of great value in the measurement of stratospheric
HOCl.28,29From these data, the altitude concentration profiles,
including diurnal variation, can be obtained. Of course, the
experimental measurements are not always easy because of the
weak nature of some rotational transitions and the lack of some
infrared transitions of sufficient strength in atmospheric window
regions, coupled with the low concentration of HOCl. In this
respect, theoretical predictions are complementary to the
experimental measurements. Comparison of the experimental
transitions with theoretical predictions can help better understand
the chlorine chemistry-based cycle that catalytically destroys
ozone. In fact, this region of the far IR spectrum has proved
valuable for a number of other stratospherically important
molecules such as OH and HO2 molecules.28 Thus, the calcula-
tions made possible by the methodologies exemplified in this
study of HOCl can find important applications.

4. Conclusions

In this paper the Lanczos homogeneous filter diagonalization
(LHFD) method has been combined with a parallel computing
strategy to calculate the challenging ro-vibrational bound-state
manifold of HOCl at low energies with total angular momentum
J ) 0, 1, 5 10, 11, 20, and 30 using the ab initio PES of Nanbu
et al. The widely used adiabatic rotation (AR) approximation
has been tested against the exact quantum results for the range
of total angular momenta. For the low-lying bound states, the
results from quantum and AR methods are generally in good
agreement. AsJ and Ka increase, the accuracy of the AR
approximation can be seen to deteriorate, but still at the
maximum value ofJ computed herein the performance is
reasonable. Through analysis of the energy levels with the same
Ka but from different spectroscopic symmetries, we can see that
Ω is generally a good quantum number for the low-energy part
of the bound-state manifold, implying that the helicity conserv-
ing approximation should be good. For the HOCl system, then,
Coriolis coupling appears not to be as important as in other
deep well systems such as in HO2. Currently we are extending
our calculations for HOCl to high-lying bound states and to
resonances in order to further explore the performance of the
approximate methods. Still higher values of the total angular
momentum are of relevance for experimental studies and are
also being investigated in our labs. Finally, further comparison
of the results from the PES of Nanbe et al. with prior surfaces
over a wide range of bound-state and scattering energies will
also be important as a preliminary to full reactive scattering
calculations on this important system.
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